Skip to main content

Composites

Piezoresistive and quasi-piezoelectric nano-composites are being developed for sensing stretching and impact in various environments. The technology can be used to provide low-cost and low-power sensors, or can be built directly into structural materials to make them self-sensing. Applications include sports padding, shoe insoles, human-computer interfaces and pregnancy monitoring belts.

Nickel nano-strands that are added to polymers and foams to make sensing composites

Trials of an impact sensor inside a football helmet

Selected publications from these research areas include:

  • Bilodeau R.A., Fullwood D.T., Colton J., Yeager J.D., Bowden A.E., Park T., Evolution of Nanojunctions in Piezoresistive Nanostrand Composites, Composites Part B, 72 (2015), 45-52. doi:10.1016/j.compositesb.2014.11.028
  • Koecher M.C., Pande J.H., Merkley S., Henderson S., Fullwood D.T., Bowden A., Remote in situ strain sensing of carbon fiber structures using embedded conductive materials, Composites B, 69 (2015), 534-541.
  • Gerrard D.D., Fullwood D.T., Halverson D.M., Correlating structure topological metrics with bulk composite properties via neural network analysis, Comp Mat Sci, 91 (2014), 20-27. doi:10.1016/j.commatsci.2014.04.014
  • Koecher M., Yeager J., Park T., Mara N., Fullwood D., Hansen N., Colton J.S., Characterization of Nickel Nanostrand Nanocomposites through Dielectric Spectroscopy and Nanoindentation, Polymer Eng & Sci, 53 (2013), Issue 12, 2666–2673.doi:10.1002/pen.23511
  • Johnson T.M., Fullwood D.T., Hansen G., Strain Monitoring of Carbon Fiber Composite via Embedded Nickel Nano-Particles, Composites: Part B, 43 (2012), 1155-1163. doi:10.1016/j.compositesb.2011.09.014
  • Johnson O., Gardner C., Mara N., Dattelbaum A., Kaschner G., Mason T., Fullwood D., Multi-scale Model for the Extreme Piezoresistivity in Silicone/Nickel Nanostrand/Nickel Coated Carbon Fiber Nanocomposites, MetTransA, 42 (2011), No. 13, 3898-3906. doi:10.1007/s11661-011-0814-9